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Abstract This work focuses on formulating constitutive models for the bulk and dou-
ble layer regions of an electrochemical system based on the fundamentals of modern
continuum thermodynamics. Particularly, the constitutive models proposed accounting
for transport phenomena in electrochemical systems by emphasizing the possibility
of cross-coupling between two or more phenomena. Upon deriving a set of thermody-
namic restrictions from the Müller-Liu approach of the second law of thermodynamics
and axioms of constitutive theory, non-equilibrium quantities are examined in detail,
and constitutive answers of the bulk and double layer regions are discussed. Moreover,
the conditions for the thermodynamic equilibrium are evaluated for each region as well
as the occurrence of dissipative mechanisms. Besides offering a proper formulation
for non-equilibrium electrochemical systems, the approach described in this work can
be easily extended to more complex chemical systems.
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1 Introduction

The discovery of electrokinetic phenomena in electrochemical systems by mid-19th
century revealed that the metal-electrolyte interface structure was more complex than it
had been supposed. Through electrokinetic and electrocapillary experiments, various
attempts have been made to build up theoretical models [1,2] of the metal-electrolyte
interface. In common, all of them describe the metal-electrolyte interface as a phase
boundary carrying an electrical potential difference which arises from opposed charges
stored in each phase surface. Then, for example, the electrode holds a positive charge
density whereas the electrolyte solution holds a negative one, such as a parallel-plate
capacitor. At the phase boundary, these positively and negatively charged layers are
at a certain distance from each other, and together they form a double layer.

Of course, this simple physical picture of a double layer could not explain all occur-
ring surface phenomena, in special, the transport phenomena of ions and other chem-
ical species under the influence of external electric fields. Thus, more sophisticated
theoretical models for the double layer [3] have been proposed, most of them founded
on principles of classical statistical mechanics. Nonetheless, despite their impressive
success to provide a framework for understanding the properties of the double layer
region, these models require a set of molecular and ionic parameters, which not always
are available. Moreover, their results are frequently limited to the structural nature of
the double layer. Hence, discussions concerning whether double layer properties affect
the drift of species and the fluxes of heat and electric current are frequently neglected.

On the other hand, continuum models provide a framework such that the flows of
mass, heat and electric current can be quantitatively analyzed in terms of material
properties of the medium. Unlike the microscopic models, the continuum ones do not
need molecular and ionic data, but only a few universal principles and macroscopic
experimental observations. Besides, according to the modern continuum thermody-
namics, the same methodology, particularly, the balance equations and constitutive
axioms have been used to investigate the transport phenomena in two different mate-
rial regions of a system. Some examples can be found e.g. in [4–8].

In this work, a continuum model for the double layer and bulk regions of an elec-
trochemical system is developed. From this model, transport phenomena in the bulk
and double layer are investigated and compared. In addition, the implications of mate-
rial equations on properties of each region are discussed. Although the current model
focuses only on electrochemical systems, the results presented can be extended to
study the flow of ions and other chemical species across cell membranes, ionic mobil-
ity in bio and geological media, and processes whose heat and mass transfers are
enhanced by electromagnetic fields.

2 Modern thermodynamics approach

Chemists and chemical engineers frequently deal with methods of equilibrium ther-
modynamics to describe the many phenomena that take place in systems of chemical
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interest. Even though equilibrium thermodynamics has been widely used by them, it
is still unsuitable to study more realistic situations involving non-reversible processes.
The initial attempts to expand the methods of equilibrium thermodynamics were made
by Onsager [9,10] and Eckart [11,12], among others [13–15] along the first 60 years
of the 20th century. They proposed a non-equilibrium thermodynamic theory, often
known as thermodynamics of irreversible processes (TIP), which is founded on the
local equilibrium hypothesis, that is, the local and instantaneous relations between
thermodynamic quantities in a system out of equilibrium are the same as if the system
was in an equilibrium state. While this assumption is well-motivated for small fluctu-
ations of the local equilibrium state, it is not proper for thermodynamic states far from
the equilibrium, as pointed out in [16,17].

In view of the theoretical and practical limitations of both equilibrium thermody-
namics and TIP, Truesdell jointly with Coleman and Noll developed a new structure for
non-equilibrium thermodynamics without imposing equilibrium neither for the whole
system, nor for the point. This new thermodynamic theory [18,19] shares the same
methodology with thermodynamics of irreversible processes, but differs in accounting
new premises that are based on more general physical and mathematical principles
valid for all types of bodies. Considering its general and analytical nature, this theory
created by mid-1950s was coined by its founders as rational thermodynamics and is
currently known as continuum thermodynamics.

In this new approach, an essential step is the statement of fundamental laws of
Physics, such as the balances of mass, linear and angular momenta, energy, and
entropy, as well as the Maxwell’s equations of the electrodynamics. These laws con-
cern all bodies, independently of their particularities, but they are not sufficient for
uniquely determining the field quantities. Then, other statements—constitutive or
material equations—must be used, which not only close the system of equations,
but also reflect the constitutive response of each body.

Generally, material equations are based on physical experience and comprise a
mathematical description of the material behavior of a certain body. Moreover, since
these equations are experimentally motivated, there is a great freedom on postulating
them, especially in relation to the number and the choice of the variables to be con-
sidered as well as the complexity of the equations. In order to ensure mathematical
and physical coherence of the constitutive model, material equations must obey some
requirements of constitutive theories, such as material objectivity, material symmetry
and the second law of thermodynamics. All these requirements have been extensively
discussed in [20,21], so they will not be detailed in this work. However, due to the
different formulations of the second law of thermodynamics, especially concerning
its use in continuum mixtures, it is worthwhile to address some comments about the
subject.

According to the continuum thermodynamics approach, additionally to the balance
equations, the material behavior of a body must also obey the entropy principle, or sec-
ond law of thermodynamics. In other words, all thermodynamic processes obtained as
solutions of the balance laws and constitutive model must be consistent with the second
law of thermodynamics. In order to deduce the restrictions put by the entropy principle
on the constitutive functions, Coleman and Noll [22] proposed that (i) the supply terms
in the linear momentum and energy balance laws do not affect the exploitation of the
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second law of thermodynamics and (ii) the entropy flux and the entropy supply are
quantities a priori given. While these statements are mathematically convenient, they
are inconsistent with some results of the gas kinetic theory and inappropriate to treat
the diffusion theory of continuum mixtures, as demonstrated by Truesdell in [19].

Thus, Müller [23,24] proposed a weaker formulation of the entropy inequality in
which the entropy flux and the entropy supply are considered unspecified constitutive
quantities, and the constitutive properties of the material do not depend on external
supplies. Nevertheless, as the exploitation of the entropy principle laid down by Müller
was too laborious yet, even for simple fluids free of external supplies, Liu [25] proposed
to incorporate Lagrange multipliers to the entropy inequality, so it must hold under
no constraints for all admissible thermodynamic processes. In the present work, this
method will be employed to impose thermodynamic restrictions on the constitutive
responses of the bulk and double layer regions.

3 General constitutive assumptions

The electrochemical system is regarded as an apolar material body formed by two
regions, being one of ionic electric conduction (bulk) and other of an electrically
charged interface (double layer). The former is an isotropic medium whose gradients
of species concentration and electric potential are not significant. Consequently, the
concentration of any species is virtually constant and the basic phenomena involve
ion-solvent and ion-ion interactions. On the other hand, the double layer is an inho-
mogeneous and anisotropic medium in relation to the fluxes of mass, heat and electric
current and comprises the region where the transfer of electrons between the electrode
and the ionic solution takes place. For the sake of simplicity, the anisotropy of the
double layer is treated as a special case of transverse isotropy, i.e., there is an isotropic
plane such that all directions in this plane are equivalent and all constitutive relations
keep unchanged under arbitrary rotations of a coordinate system in relation to a major
axis [26]. Under these conditions, the fluxes of mass, heat and electric current present
a preferred direction that is orthogonal to the isotropic plane.

Furthermore, the separation between the double layer and the bulk is marked by
abrupt changes of the electric potential and species concentrations. Mathematically,
these changes are accounted for through a singular surface that separates the bulk and
double layer. At the singular surface, corresponding jump conditions for balance equa-
tions valid in bulk and double layer must be formulated. Nevertheless, the properties
of the singular surface are not examined in this work.

In order to study the material behavior of both regions of an electrochemical system,
it is supposed that the mixture obeys the postulates of the classical theory of mixtures
[19], and the quasi-electrostatic Maxwell’s equations [27] are employed according to
the Chu formulation of moving media [28]. The mixture is treated as an aqueous diluted
solution constituted by chemical species, which carry electric charges and/or dipole
moments. A non-specified constituent is denoted by an index a, which assumes values
a = 1, . . . , n, being the index n reserved for the main fluid (solvent). Accordingly,
quantities labeled with an index a, named partial quantities, express physical quantities
of the constituent a. All fields are given in the Eulerian description and only Cartesian

123



J Math Chem (2014) 52:441–463 445

tensors are used. The necessary background in non-equilibrium theories and in calculus
and tensor analysis is assumed known. In turn, the kinematics and the balance equations
used to describe the thermo-electrochemical behavior of the bulk and double layer
regions are the same presented in [29], but, for convenience, they are concisely restated.

3.1 Kinematics and balance equations

Let a continuum mixture B and its constituents Ba occupy a region in the Euclidean
space E . Besides, let B and Ba be continuous sets of particles or material points that
are put into a one-to-one correspondence with the points of a region of the physical
space. Incidentally, particles in continuum theories do not represent atoms, molecules,
ions, nor other classical particles, which can be easily labeled, but rather mathematical
points endowed with physical properties, such as mass density, velocity, electric field,
internal energy density etc.

Each particle of a continuum is identified with its spatial position x in E at time
t , corresponding to the reference position X at the initial time t = 0. Furthermore,
in continuum theories of classical mixtures, B consists of a set of overlapping Ba ,
all occupying the same spatial position in E at time t . This means that the location x
of a particle of the mixture coincides with the current location xa of any constituent.
Therefore, there must exist particles of all constituents at every spatial position x.
Despite this assumption is an evident shortcoming in view of the discrete nature of
matter, it is physically well-motivated since in single phase mixtures constituents are
not macroscopically distinct, but only at the molecular level. Then, any representative
volume must always be occupied by some amount of mass of all constituents.

Each constituent has its own kinematics. The velocity and acceleration of the con-
stituent a at time t are, respectively,

va ≡ ∂xa(Xa, t)

∂t
, aa ≡ ∂2xa(Xa, t)

∂t2 . (3.1)

Likewise, each Ba has its own mass and its positive mass density ρa (x, t) at time t.
The mass density of the whole mixture, ρ (x, t), is related to ρa (x, t) by

ρ (x, t) ≡
n∑

a=1

ρa . (3.2)

At every (x, t) the mass concentration of Ba is defined by

ξa (x, t) ≡ ρa

ρ
, (3.3)

whence Eqs. (3.2) and (3.3) imply
∑n

a=1ξa = 1. The mean velocity of B at time t is
defined by
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ρv (x, t) ≡
n∑

a=1

ρava , (3.4)

and the relative velocity of Ba is

ua (x, t) = va − v. (3.5)

Thus, from Eqs. (3.2), (3.4) and (3.5) it follows that
∑n

a=1ρua = 0. Note that ua is
a generalized relative velocity whose precise definition depends upon specificities of
the system and its external supplies.

The governing mechanical and electromagnetic balance equations of an electro-
chemical system at every regular point are:

Balance of mass

dρ

dt
+ ρdiv (v) = 0 , (3.6)

Balance of concentration

ρ
dξa

dt
+ div (ja)− ca = 0 , (3.7)

Balance of linear momentum

ρ
dv
dt

− div (T )− ρb − qE − P · ∇E = 0 , (3.8)

Balance of angular momentum

T = T T , (3.9)

Balance of energy

ρ
dε

dt
+ div (h)− T · ∇v − ρr − Ṗ · E − i · E = 0 , (3.10)

Balance of entropy

ρ
dη

dt
+ div (Φ)− ρσ ≥ 0 , (3.11)

Faraday’s law

curl(E) = 0 , (3.12)
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Ampère’s law

curl (H) = i + ∂D
∂t

+ curl (P × v) , (3.13)

Gauss’ law

div (D) = q , (3.14)

Magnetic flux law

div (B) = 0. (3.15)

Here, ja is the mass flux, ca is the mass production, T is the stress tensor, q is the
charge density defined by ρz, being z the charge per unit mass, E and P respectively
are the electric field and the polarization field, b is the mechanical body force density,
ε is the internal energy density, h is the heat flux, r is the mechanical energy supply
density, i is the electric conduction current density, η is the entropy density, Φ is the
entropy flux vector, σ is the entropy supply, H is the magnetic field, D is the electric
displacement vector, and B is the magnetic flux. From Eq. (3.12), one exploits the
irrotational nature of the quasi-static electric field and defines it in terms of a scalar
function. Thus, recalling the Helmholtz theorem, one writes

E (x, t) = −∇ϕ , (3.16)

where ϕ is the electric potential. Expressly, Eq. (3.16) shows that the electric field is
completely specified by its scalar source (Gauss law).

4 Constitutive modeling of an electrochemical system

In this section, the entropy inequality is evaluated for constitutive classes that are
suitable for the bulk and double layer regions.

4.1 Bulk region

In order to investigate the occurring physical phenomena in the bulk region, the basic
fields - mass density of the mixture, ρ (x, t), mass concentration, ξa (x, t), empiric
temperature, θ (x, t), electric potential, ϕ (x, t), and velocity of the mixture, v (x, t) -
are evaluated by regarding the bulk as a heat and electrical conducting viscous mixture,
so that most of its properties are taken into account through the set of independent
constitutive variables

y ∈ {ρ, ξa, θ,∇θ, ϕ, v,∇v} (a = 1, .., n − 1) . (4.1)

However, as the material objectivity principle [18,20,21,26] requires that constitutive
quantities must not depend on the observer, constitutive functions are independent of
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velocity, and they only depend on the gradient of velocity through its symmetric part,
represented by the stretching tensor D. Thus,

C = Ĉ (ρ, ξa, θ,∇θ, ϕ, D) (a = 1, .., n − 1) , (4.2)

where C ∈ {η,Φ, T ,P, ε,h, i}.
The determination of the basic fields proceeds by evaluating the inequality

Π = ρ
dη

dt
+ div (Φ)− ρσ −Λρ

(
dρ

dt
+ ρdiv (v)

)
−

n−1∑

a=1

Λξa

(
ρ

dξa

dt
+ div (ja)

)

− Λv ·
(
ρ

dv
dt

− div (T )+ q∇ϕ − ρb + P · ∇ (∇ϕ)
)

− Λε
(
ρ

dε

dt
+ div (h)− T · ∇v − ρr + Ṗ · ∇ϕ + i · ∇ϕ

)

− Λϕ
(

div (P)+ εo∇2ϕ − q
)

≥ 0 , (4.3)

which must be satisfied for any fields ρ (x, t), ξa (x, t), θ (x, t), ϕ (x, t) and v (x, t).
Here, the Lagrange multipliers of mass,Λρ , concentration,Λξa , velocity, Λv, energy,
Λε, and electric potential, Λϕ , are auxiliary constitutive quantities on which thermo-
dynamic restrictions must also be placed.

In addition to the constitutive assumptions presented in the previous section, further
hypotheses are necessary to guarantee the adequacy of the constitutive model. These
auxiliary hypotheses are valid for both bulk and double layer regions. They are:

1. The Lagrange multiplier of energy is reciprocal of the empiric temperature,
Λε = 1

θ
. As demonstrated by Liu and Müller [30], this expression is appropri-

ate if the time derivative of empiric temperature is not included into the set of
independent constitutive variables. Then, Λε can be deduced by considering that,
in a ideal material surface separating two heat conducting viscous fluids, tem-
perature is continuous and there is no entropy production. Moreover, Müller [31]
also demonstrated that Λε = 1

θ
is valid for continuum mixtures because the jump

conditions for the empiric temperature and entropy production hold.
2. The definition of the Lagrange multiplier of concentration, Λξa , can be obtained

by using the same arguments employed to deduce the expression for Λε, that is, a
heat conducting viscous mixture is brought into contact with one of its constituents
through a ideal material surface. In this case, Liu and Müller also demonstrated
thatΛξa is continuous across the ideal material surface and is related to the energy
and momentum fluxes of a chemical species.

3. Extending the definition of Λξa provided by Müller [31] to a medium under influ-
ence of quasi-electrostatic fields, Λξa may be decomposed into an intrinsic con-
stitutive part and an electric potential contribution, viz. Λξa = −θΛξa

I + qaϕ. The

intrinsic part of Λξa is the chemical potential of a system, μ̄a = −θΛξa
I . On the

other hand, μa = −θΛξa
I + qaϕ is the electrochemical potential since the energy

123



J Math Chem (2014) 52:441–463 449

state of a constituent carrier of charge in any location of the electrolyte solution
clearly depends on the chemical environment and its own electric nature. Of course,
if the chemical species is not a charge carrier, μa = μ̄a .

4. The definition of Λρ comes directly from the evaluation of the equilibrium con-
ditions of a viscous heat conducting fluid. Then, the expression p = −ρ θΛρ is
deduced, where p is the hydrostatic pressure.

5. The supplies of linear momentum, energy, and entropy should not influence the
material behavior of the body.

6. The degree of polarization of each region of an electrochemical system is com-
pletely determined by a linear and isotropic function of type P = −εoχ∇ϕ, where
εo is the permittivity of free space and χ is the electric susceptibility. Hence, thanks
to the great excess of solvent mass in relation to the masses of other constituents,
the dielectric properties of each region of an electrochemical system are almost
exclusively due to the solvent (water).

7. The term ca only deals with mass production due to electrodic reactions, i.e.,
reactions that come about at the electrode surface. Thus, ca = 0 for the bulk and
ca �= 0 for the double layer.

8. Because the mixture is diluted, it is assumed that the mixture particles are trans-
ported by the aqueous solvent, so that the velocity of the mixture particles is nearly
the same as the velocity of the main fluid. Moreover, it is supposed that the con-
stituent particles show the same temperature and electromagnetic fields as the
solvent. Then, the dynamics of the mixture is along with that of the main fluid.

9. Since the electric charge density is given in terms of the mass density as stated in
the previous section, restrictions are not imposed on both quantities, but either on
the electric charge density or mass density.

If the constitutive functions considered in Eq. (4.2) are introduced into Eq. (4.3) and
all differentiations are carried out according to the chain rule, Eq. (4.3) is rewritten as

Π =dρ

dt

(
ρ
∂η

∂ρ
−Λρ − ρΛε

∂ε

∂ρ
−Λε∇ϕ · ∂P

∂ρ

)

+
n−1∑

a=1

dξa

dt

(
ρ
∂η

∂ξa
− ρΛξa − ρΛε

∂ε

∂ξa
−Λε∇ϕ · ∂P

∂ξa

)

+ dθ

dt

(
ρ
∂η

∂θ
− ρΛε

∂ε

∂θ
−Λε∇ϕ · ∂P

∂θ

)

+ d∇θ
dt

·
(
ρ
∂η

∂∇θ − ρΛε
∂ε

∂∇θ −Λε∇ϕ ∂P
∂∇θ

)

+ dϕ

dt

(
ρ
∂η

∂ϕ
− ρΛε

∂ε

∂ϕ
−Λε∇ϕ · ∂P

∂ϕ

)

+ d D
dt

·
(
ρ
∂η

∂D
− ρΛε

∂ε

∂D
−Λε∇ϕ ∂P

∂D

)
+ dv

dt
· (−ρΛv)

+ ∇ρ ·
(
∂Φ

∂ρ
−

n−1∑

a=1

Λξa
∂ja

∂ρ
+ Λv ∂T

∂ρ
−Λϕ

∂P
∂ρ

−Λε
∂h
∂ρ

)
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+
n−1∑

b=1

∇ξb ·
(
∂Φ

∂ξb
−

n−1∑

a=1

Λξa
∂ja

∂ξb

∣∣∣∣
a �=b

+ Λv ∂T
∂ξb

−Λϕ
∂P
∂ξb

−Λε
∂h
∂ξb

)

+ ∇θ ·
(
∂Φ

∂θ
−

n−1∑

a=1

Λξa
∂ja

∂θ
+ Λv ∂T

∂θ
−Λϕ

∂P
∂θ

−Λε
∂h
∂θ

)

+ ∇ (∇θ) ·
(
∂Φ

∂∇θ −
n−1∑

a=1

Λξa
∂ja

∂∇θ + Λv ∂T
∂∇θ −Λϕ

∂P
∂∇θ −Λε

∂h
∂∇θ

)

+ ∇ϕ ·
(
∂Φ

∂ϕ
−

n−1∑

a=1

Λξa
∂ja

∂ϕ
+ Λv ∂T

∂ϕ
−Λϕ

∂P
∂ϕ

−Λε
∂h
∂ϕ

−Λεi

)

+ ∇ D ·
(
∂Φ

∂D
−

n−1∑

a=1

Λξa
∂ja

∂D
+ Λv ∂T

∂D
−Λϕ

∂P
∂D

−Λε
∂h
∂D

)

− Λv · [P · ∇ (∇ϕ)] +ΛεT · D − ρΛρ1 · D −Λϕεo∇2ϕ +Λϕq ≥ 0 ,

(4.4)

where εo is regarded as homogeneous. Eq. (4.4) is alternatively expressed as

Π = A (y) · W + B (y) ≥ 0 , (4.5)

where A (y) and B (y) are respectively vector and scalar functions of y and W is a
constitutive variable not listed in (4.1). Since the inequality above is linear in

W ∈
{

dρ

dt
,

dξa
dt
,

dθ

dt
,

d∇θ
dt

,
dϕ

dt
,

d D
dt
,

dv
dt
,∇ρ,∇ξb,∇ (∇θ) ,∇ϕ,∇ (∇ϕ) ,∇ D,∇2ϕ

}
,

(4.6)

Liu [26] demonstrated through the principle of local solvability that Eq. (4.5) must
hold for arbitrary values of y and W. Necessary and sufficient condition for this is

A (y) = 0 , andB (y) ≥ 0. (4.7)

In other terms, Eq. (4.7) indicates that A (y)must vanish, otherwise Eq. (4.5) could be
violated. These arguments lead to the following Liu identities

ρ
∂η

∂ρ
−Λρ − ρΛε

∂ε

∂ρ
−Λε∇ϕ · ∂P

∂ρ
= 0 ,

ρ
∂η

∂ξa
− ρΛξa − ρΛε

∂ε

∂ξa
−Λε∇ϕ · ∂P

∂ξa
= 0 (a = 1, .., n − 1) ,

ρ
∂η

∂θ
− ρΛε

∂ε

∂θ
−Λε∇ϕ · ∂P

∂θ
= 0 ,

ρ
∂η

∂∇θ − ρΛε
∂ε

∂∇θ −Λε∇ϕ ∂P
∂∇θ = 0 , (4.8)
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ρ
∂η

∂ϕ
− ρΛε

∂ε

∂ϕ
−Λε∇ϕ · ∂P

∂ϕ
= 0 ,

ρ
∂η

∂D
− ρΛε

∂ε

∂D
−Λε∇ϕ ∂P

∂D
= 0 ,

−ρΛv = 0 , Λϕ = 0 ,

∂Φ

∂ρ
−

n−1∑

a=1

Λξa
∂ja

∂ρ
+ Λv ∂T

∂ρ
−Λϕ

∂P
∂ρ

−Λε
∂h
∂ρ

= 0 ,

∂Φ

∂ξb
−

n−1∑

a=1

Λξa
∂ja

∂ξb

∣∣∣∣
a �=b

+ Λv ∂T
∂ξb

−Λϕ
∂P
∂ξb

−Λε
∂h
∂ξb

= 0 (b = 1, .., n − 1) ,

sym

(
∂Φ

∂∇θ −
n−1∑

a=1

Λξa
∂ja

∂∇θ + Λv ∂T
∂∇θ −Λϕ

∂P
∂∇θ −Λε

∂h
∂∇θ

)
= 0 , (4.9)

∂Φ

∂ϕ
−

n−1∑

a=1

Λξa
∂ja

∂ϕ
+ Λv ∂T

∂ϕ
−Λϕ

∂P
∂ϕ

−Λε
∂h
∂ϕ

−Λεi = 0 ,

∂Φ

∂D
−

n−1∑

a=1

Λξa
∂ja

∂D
+ Λv ∂T

∂D
−Λϕ

∂P
∂D

−Λε
∂h
∂D

= 0 ,

as well as the residual inequality

Π = ∇θ ·
(
∂Φ

∂θ
−

n−1∑

a=1

Λξa
∂ja

∂θ
+ Λv ∂T

∂θ
−Λϕ

∂P
∂θ

−Λε
∂h
∂θ

)

+ΛεT · D − ρΛρ1 · D ≥ 0. (4.10)

In obtaining Eq. (4.9)3, the theorem of Cartesian decomposition of tensors was
employed to impose that only the symmetric part of ∇ (∇θ) needs to vanish. Fur-
thermore, in view of the constitutive assumptions previously established, one shows
by cross differentiation of Eq. (4.8) that η = η̂ (ρ, ξa, θ), ε = ε̂ (ρ, ξa, θ), Λρ =
Λ̂ρ (ρ, ξa, θ), and Λξa = Λ̂ξa (ρ, ξa, θ, ϕ) for a = 1, ..., n. From the Liu identities

(4.8) andψ = ε−θη+∇ϕ · P
ρ

, one also demonstrates that the thermodynamic relation

dψ = p

ρ2 dρ +
n−1∑

a=1

μadξa − ηdθ − P · d

(∇ϕ
ρ

)
(4.11)

holds at every point of the bulk, either in equilibrium or not. Moreover, from Eqs. (4.8)
and (4.11), one obtains the integrability conditions,
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∂
(

p/ρ2
)

∂θ
= −∂η

∂ρ
,

∂
(

p/ρ2
)

∂ξa
= ∂μa

∂ρ
,

∂μa

∂θ
= − ∂η

∂ξa
, (4.12)

as well as the reduced dependence ψ = ψ̂ (ρ, ξa, θ,∇ϕ), where it should be recalled
that P is only function of ∇ϕ.

Using the definitions of Lagrange multipliers Λv and Λϕ , the extra entropy flux
φ = Φ − ∑n−1

a=1Λ
ξa ja −Λεh is introduced. Then, the Liu identities (4.9) become

∂φ

∂ρ
= Λε

n−1∑

a=1

∂μa

∂ρ
ja ,

∂φ

∂ξb
= Λε

n−1∑

a=1

∂μa

∂ξb
ja

∣∣∣∣
a �=b

(b = 1, .., n − 1) ,

sym

(
∂φ

∂∇θ
)

= sym

(
Λε

n−1∑

a=1

∂μa

∂∇θ ja

)
, (4.13)

∂φ

∂ϕ
= Λε

n−1∑

a=1

∂μa

∂ϕ
ja +Λεi ,

∂φ

∂D
= Λε

n−1∑

a=1

∂μa

∂D
ja ,

where the definition of Λξa was employed. However, as the reduced dependence of
Λξa reflects on μa , one has μa = μ̂a(ρ, ξa, θ, ϕ) and, from Eq. (4.13), it follows that
∂φ
∂ξb

= 0, sym( ∂φ
∂∇θ ) = 0, and ∂φ

∂D = 0, though ∂φ
∂ρ

and ∂φ
∂ϕ

are not null vectors. Then,
if one imposes that the extra entropy flux is an isotropic vector, φ is null since there
are no scalar generators for an isotropic vector function. Consequently, Eqs. (4.13)1

and (4.13)4 respectively become ∂φ
∂ρ

= 0 and i = −∑n−1
a=1

∂μa
∂ϕ

ja . Applying the elec-

trochemical potential definition, the latter can be further simplified to i = ∑n−1
a=1ia ,

where ia = −qaja and the electric current sign convention is such that the partial
current is negative for the reduction of a cation or for the oxidation of an anion,
and positive for the oxidation of a cation or reduction of an anion. This expression
implies that (i) the total current in the bulk region is given by the algebraic sum of
all flows of charge carrier constituents, also known as faradaic currents, and (ii) the
assumption of isotropic material symmetry for the bulk region is physically consis-
tent.

Recalling φ = 0, the definition of mass Lagrange multiplier and ∇μa = ∂μa
∂θ

∇θ ,
where ∇μa is given only in terms of ∇θ because ∇ρ, ∇ξa and ∇ϕ are not independent
constitutive variables, the entropy flux takes the form Φ = Λεh + ∑n−1

a=1Λ
ξa ja and

Eq. (4.10) is rewritten as

Π = −∇θ
θ

· h −
n−1∑

a=1

ja · ∇μa + T · D + p1 · D ≥ 0. (4.14)
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The left-hand side of Eq. (4.14) is the residual entropy production density, a non-
negative quantity for arbitrary values of {ρ, ξa, θ,∇θ, ϕ, D}. Whenever Π takes
the zero value, there is no entropy production and, therefore, there is a local ther-
modynamic equilibrium state at (x, t). Necessary conditions for Π = 0 at (x, t)
are

(
∂Π

∂yB

)∣∣∣∣
E

= 0 ,

(
∂2Π

∂yB∂yB

)∣∣∣∣
E

≥ 0 , (4.15)

where yB ∈ {∇θ,∇μa, D} and the index E stands for the equilibrium state. Expressly,
the heat conduction, the mass transport and the deformations that occur in the bulk
are dissipative mechanisms, which contribute to the production of residual entropy
density.

In exploiting the first-order derivative ofΠ in relation to yB , constraints are imposed
on the static parts of constitutive quantities. Thus, immediate consequences of (4.15)1
are

(
∂Π

∂∇θ
)∣∣∣∣

E
= −1

θ
h = 0 , (4.16)

(
∂Π

∂∇μa

)∣∣∣∣
E

= −ja = 0 , (4.17)

and
(
∂Π

∂D

)∣∣∣∣
E

= T + p1 = 0 , (4.18)

T = −p1.

Restrictions on the dynamic parts of constitutive functions come from the second-
order derivative of Π in relation to yB . Supposing an isotropic Newtonian fluid and
following the theorem of representation of isotropic functions [32,33], one writes in
component form

Ti j = −pδi j +
(
α + 2

3
β

)
Dnnδi j + 2β D̄i j + O (2) ,

hi = κ1θ,i + κ2μ
a
,i + O (2) ,

ja
i = Ca

1μ
a
,i + Ca

2 θ,i + O (2) , (4.19)

where D̄ = D − 1

3
tr (D) 1 is the deviatoric part of D and all phenomenological

coefficients are material functions of type

PB = P̂B (ρ, ξa, θ, ϕ,∇θ · ∇θ, tr D) . (4.20)
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With Eq. (4.19), the residual entropy inequality becomes

Π = −κ1
θ,i

θ
θ,i −

n−1∑

a=1

Ca
1μ

a
,iμ

a
,i −

(
κ2

θ
+

n−1∑

a=1

Ca
2

)
θ,iμ

a
,i

+
(
α + 2

3
β

)
D2

nn + 2β D̄i j D̄i j ≥ 0 , (4.21)

which implies the following restrictions on phenomenological parameters

κ1

θ
≤ 0 ,

n−1∑

a=1

Ca
1 ≤ 0 ,

n−1∑

a=1

Ca
2 − κ2

θ
≤ 0 , α + 2

3
β ≥ 0 , β ≤ 0 ,

(4.22)

where κ1 is the thermal conductivity coefficient, Ca
1 is the mass transport coefficient,

Ca
2 and κa

2 are phenomenological coefficients related to thermophoresis, and β and
α + 2

3β are the shear and bulk viscosities, respectively. Physically, the inequalities
above evidence that the heat flux vector opposes the temperature gradient (Fourier’s
law) as well as the diffusive flux vector is opposed to the gradient of electrochemical
potential. Moreover, the transport of matter through bulk is also caused by the coupling
of heat and mass flows, and the particles of the electrolyte bulk flow in the direction
of shearing forces.

4.2 Double layer region

It has been long recognized that the introduction of an electrode under potential control
into an electrolyte solution disrupts the bulk solution structure, modifying the inter-
actions that occur between the ions/molecules in solution and the electrode surface.
As a result, different physical and chemical phenomena arise in the electrochemical
system, and a new constitutive class should be formulated.

In the double layer, one is interested in determining the same basic fields accounted
in the bulk region, but, unlike there, one assumes that the double layer is a viscous heat
and electrical conducting mixture with chemical reactions and mass transport caused
by sources different than those in the bulk. Thus, the constitutive response of double
layer depends on

w ∈ {ρ, θ,∇θ, ξa,∇ξb, ϕ,∇ϕ, v,∇v,n} (∀a, b = 1, ..., n − 1) , (4.23)

where n is a vector that characterizes the preferred direction of the double layer in an
undistorted configuration. At this point, it is worth mentioning that the representation
theorem of anisotropic invariants [34] has been used to write constitutive relations as
C = Ĉ (w), where C ∈ {ja, ca, T , ε,h,P, i, η,Φ}.

Axioms of constitutive theory require that all variables listed in (4.23) are objective
scalars, vectors and tensors. In addition, all constitutive equations must obey the prin-
ciple of material objectivity. Then, C does not depend explicitly on v, but it depends
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on ∇v only through its symmetric part D, that is,

w ∈ {ρ, θ,∇θ, ξa,∇ξb, ϕ,∇ϕ, D,n} (∀a, b = 1, ..., n − 1) . (4.24)

According to the method of Lagrange multipliers for exploitation of entropy
inequality, there exist Lagrange multipliers Λρ , Λξa , Λv, Λε and Λϕ that, whenever
multiplied by their corresponding balance laws, they produce an inequality

Π = ρ
dη

dt
+div (Φ)− ρσ−Λρ

(
dρ

dt
+ρdiv (v)

)
−

n−1∑

a=1

Λξa

(
ρ

dξa

dt
+ div (ja)− ca

)

−Λv ·
(
ρ

dv
dt

− div (T )+ q∇ϕ − ρb + P · ∇ (∇ϕ)
)

−Λε
(
ρ

dε

dt
+ div (h)− T · ∇v − ρr + Ṗ · ∇ϕ + i · ∇ϕ

)

−Λϕ
(

div (P)+ εo∇2ϕ − q
)

≥ 0 (4.25)

which is valid for any solution {ρ (x, t) , ξa (x, t) , θ (x, t) , ϕ (x, t) , v (x, t)} of field
equations. After introducing constitutive equations into (4.25) and all differentiations
are performed in accordance with the chain rule, the entropy inequality becomes

Π = dρ

dt

(
ρ
∂η

∂ρ
−Λρ − ρΛε

∂ε

∂ρ
−Λε∇ϕ · ∂P

∂ρ

)

+
n−1∑

a=1

dξa

dt

(
ρ
∂η

∂ξa
− ρΛξa − ρΛε

∂ε

∂ξa
−Λε∇ϕ · ∂P

∂ξa

)

+
n−1∑

b=1

d∇ξb

dt
·
(
ρ
∂η

∂∇ξb
− ρΛε

∂ε

∂∇ξb
−Λε∇ϕ ∂P

∂∇ξb

)

+ dθ

dt

(
ρ
∂η

∂θ
− ρΛε

∂ε

∂θ
−Λε∇ϕ · ∂P

∂θ

)

+ d∇θ
dt

·
(
ρ
∂η

∂∇θ − ρΛε
∂ε

∂∇θ −Λε∇ϕ ∂P
∂∇θ

)

+ dϕ

dt

(
ρ
∂η

∂ϕ
− ρΛε

∂ε

∂ϕ
−Λε∇ϕ · ∂P

∂ϕ

)

+ d∇ϕ
dt

·
(
ρ
∂η

∂∇ϕ − ρΛε
∂ε

∂∇ϕ −Λε∇ϕ · ∂P
∂∇ϕ

)

+ d D
dt

·
(
ρ
∂η

∂D
− ρΛε

∂ε

∂D
−Λε∇ϕ ∂P

∂D

)

+ dn
dt

·
(
ρ
∂η

∂n
− ρΛε

∂ε

∂n
−Λε∇ϕ ∂P

∂n

)
+ dv

dt
· (−ρΛv)
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+∇ρ ·
(
∂Φ

∂ρ
−

n−1∑

a=1

Λξa
∂ja

∂ρ
+ Λv ∂T

∂ρ
−Λϕ

∂P
∂ρ

−Λε
∂h
∂ρ

)

+
n−1∑

b=1

∇ξb ·
(
∂Φ

∂ξb
−

n−1∑

a=1

Λξa
∂ja

∂ξb

∣∣∣∣
a �=b

+ Λv ∂T
∂ξb

−Λϕ
∂P
∂ξb

−Λε
∂h
∂ξb

)

+
n−1∑

b=1

∇ (∇ξb)·
(
∂Φ

∂∇ξb
−

n−1∑

a=1

Λξa
∂ja

∂∇ξb

∣∣∣∣
a �=b

+Λv ∂T
∂∇ξb

−Λϕ ∂P
∂∇ξb

−Λε ∂h
∂∇ξb

)

+∇θ ·
(
∂Φ

∂θ
−

n−1∑

a=1

Λξa
∂ja

∂θ
+ Λv ∂T

∂θ
−Λϕ

∂P
∂θ

−Λε
∂h
∂θ

)

+∇ (∇θ) ·
(
∂Φ

∂∇θ −
n−1∑

a=1

Λξa
∂ja

∂∇θ + Λv ∂T
∂∇θ −Λϕ

∂P
∂∇θ −Λε

∂h
∂∇θ

)

+∇ϕ ·
(
∂Φ

∂ϕ
−

n−1∑

a=1

Λξa
∂ja

∂ϕ
+ Λv ∂T

∂ϕ
−Λϕ

∂P
∂ϕ

−Λε
∂h
∂ϕ

−Λεi

)

+∇ (∇ϕ)·
(
∂Φ

∂∇ϕ−
n−1∑

a=1

Λξa
∂ja

∂∇ϕ + Λv ∂T
∂∇ϕ − Λv ·P −Λϕ

∂P
∂∇ϕ −Λε

∂h
∂∇ϕ

)

+∇ D ·
(
∂Φ

∂D
−

n−1∑

a=1

Λξa
∂ja

∂D
+ Λv ∂T

∂D
−Λϕ

∂P
∂D

−Λε
∂h
∂D

)

+∇n ·
(
∂Φ

∂n
−

n−1∑

a=1

Λξa
∂ja

∂n
+ Λv ∂T

∂n
−Λϕ

∂P
∂n

−Λε
∂h
∂n

)

+ΛεT · D − ρΛρ1 · D −Λϕεo∇2ϕ +Λϕq +
n−1∑

a=1

Λξa ca ≥ 0, (4.26)

where εo is homogeneous. In the same way that Eq. (4.4), Eq. (4.26) can be expressed
as

Π = A (w) · Z + B (w) ≥ 0 ,

which is linear in

Z ∈
{

dρ

dt
,

dξa

dt
,

d∇ξb

dt
,

dθ

dt
,

d∇θ
dt

,
dϕ

dt
,

d∇ϕ
dt

,
d D
dt
,

dn
dt
,

dv
dt
,

∇ρ,∇ (∇ξb) ,∇ (∇θ) ,∇ (∇ϕ) ,∇ D,∇n,∇2ϕ

}
. (4.27)

Hence, according to the principle of local solvability, the coefficients of Z in Eq. (4.26)
must vanish, otherwise the entropy inequality could be violated. These arguments lead
to the Liu identities
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ρ
∂η

∂ρ
−Λρ − ρΛε

∂ε

∂ρ
−Λε∇ϕ · ∂P

∂ρ
= 0 ,

ρ
∂η

∂ξa
− ρΛξa − ρΛε

∂ε

∂ξa
−Λε∇ϕ · ∂P

∂ξa
= 0 ,

ρ
∂η

∂∇ξb
− ρΛε

∂ε

∂∇ξb
−Λε∇ϕ ∂P

∂∇ξb
= 0 , (b = 1, .., n − 1)

ρ
∂η

∂θ
− ρΛε

∂ε

∂θ
−Λε∇ϕ · ∂P

∂θ
= 0 ,

ρ
∂η

∂∇θ − ρΛε
∂ε

∂∇θ −Λε∇ϕ ∂P
∂∇θ = 0 ,

ρ
∂η

∂ϕ
− ρΛε

∂ε

∂ϕ
−Λε∇ϕ · ∂P

∂ϕ
= 0 , (4.28)

ρ
∂η

∂∇ϕ − ρΛε
∂ε

∂∇ϕ −Λε∇ϕ ∂P
∂∇ϕ = 0 ,

ρ
∂η

∂D
− ρΛε

∂ε

∂D
−Λε∇ϕ ∂P

∂D
= 0 ,

ρ
∂η

∂n
− ρΛε

∂ε

∂n
−Λε∇ϕ ∂P

∂n
= 0 ,

−ρΛv = 0 , Λϕ = 0 ,

∂Φ

∂ρ
−

n−1∑

a=1

Λξa
∂ja

∂ρ
+ Λv ∂T

∂ρ
−Λϕ

∂P
∂ρ

−Λε
∂h
∂ρ

= 0 ,

sym

(
∂Φ

∂∇ξb
−

n−1∑

a=1

Λξa
∂ja

∂∇ξb

∣∣∣∣
a �=b

+ Λv ∂T
∂∇ξb

−Λϕ
∂P
∂ξb

−Λε ∂h
∂∇ξb

)
= 0 , (b = 1, .., n − 1)

sym

(
∂Φ

∂∇θ −
n−1∑

a=1

Λξa
∂ja

∂∇θ + Λv ∂T
∂∇θ −Λϕ

∂P
∂∇θ −Λε

∂h
∂∇θ

)
= 0 , (4.29)

sym

(
∂Φ

∂∇ϕ−
n−1∑

a=1

Λξa
∂ja

∂∇ϕ+Λv ∂T
∂∇ϕ − Λv · P−Λϕ ∂P

∂∇ϕ−Λε ∂h
∂∇ϕ

)
=0 ,

∂Φ

∂D
−

n−1∑

a=1

Λξa
∂ja

∂D
+ Λv ∂T

∂D
−Λϕ

∂P
∂D

−Λε
∂h
∂D

= 0 ,

∂Φ

∂n
−

n−1∑

a=1

Λξa
∂ja

∂n
+ Λv ∂T

∂n
−Λϕ

∂P
∂n

−Λε
∂h
∂n

= 0 ,
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as well as the residual inequality

Π =
n−1∑

b=1

∇ξb ·
(
∂Φ

∂ξb
−

n−1∑

a=1

Λξa
∂ja

∂ξb

∣∣∣∣
a �=b

+ Λv ∂T
∂ξb

−Λϕ
∂P
∂ξb

−Λε
∂h
∂ξb

)

+∇θ ·
(
∂Φ

∂θ
−

n−1∑

a=1

Λξa
∂ja

∂θ
+ Λv ∂T

∂θ
−Λϕ

∂P
∂θ

−Λε
∂h
∂θ

)

+∇ϕ ·
(
∂Φ

∂ϕ
−

n−1∑

a=1

Λξa
∂ja

∂ϕ
+ Λv ∂T

∂ϕ
−Λϕ

∂P
∂ϕ

−Λε
∂h
∂ϕ

−Λεi

)

+ΛεT · D − ρΛρ1 · D −Λϕεo∇2ϕ +Λϕq +
n−1∑

a=1

Λξa ca ≥ 0. (4.30)

Further conclusions can be drawn from the Liu identities above. Since P is an isotropic
and linear function of ∇ϕ and Λε depends exclusively on θ , by the cross differ-
entiation of identities (4.28) one proves that η = η̂ (ρ, θ, ξa), ε = ε̂ (ρ, θ, ξa),
Λρ = Λ̂ρ (ρ, θ, ξa), Λξa = Λ̂ξa (ρ, θ, ξa, ϕ), and

∂
(

p/ρ2
)

∂θ
= −∂η

∂ρ
,

∂
(

p/ρ2
)

∂ξa
= ∂μa

∂ρ
,

∂μa

∂θ
= − ∂η

∂ξa
, (4.31)

where (4.31) are the integrability conditions for thermodynamic potential ψ = ε −
θη + P

ρ
· ∇ϕ. Thus, one has the thermodynamic relation

dψ = p

ρ2 dρ +
n−1∑

a=1

μadξa − ηdθ − P · d

(∇ϕ
ρ

)
, (4.32)

whence ψ = ψ̂ (ρ, θ, ξa,∇ϕ).
In turn, from the Liu identities (4.29) one introduces the extra entropy flux φ =

Φ − ∑n−1
a=1Λ

ξa ja − Λεh, where Λv = 0 and Λϕ = 0 were used. Substituting the
expression for the extra entropy flux into (4.29) and making use of definition of Λξa ,
it follows that

∂φ

∂ρ
= Λε

n−1∑

a=1

∂μa

∂ρ
ja ,

sym

(
∂φ

∂∇ξb

)
= sym

(
Λε

n−1∑

a=1

∂ja

∂∇ξb

∣∣∣∣
a �=b

)
, (∀b = 1, .., n − 1)

sym

(
∂φ

∂∇θ
)

= sym

(
Λε

n−1∑

a=1

∂μa

∂∇θ ja

)
,
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∂φ

∂∇ϕ = Λε
n−1∑

a=1

∂μa

∂∇ϕ ja , (4.33)

∂φ

∂D
= Λε

n−1∑

a=1

∂μa

∂D
ja ,

∂φ

∂n
= Λε

n−1∑

a=1

∂μa

∂n
ja .

Nevertheless, as μa should present the same reduced dependence of Λξa , one has

from Eq. (4.33) that sym
(
∂φ
∂∇ξb

)
= 0, sym

(
∂φ
∂∇θ

)
= 0, ∂φ

∂∇ϕ = 0, ∂φ
∂D = 0 and

∂φ
∂n = 0. Note that only the derivative of the extra entropy flux in relation to mass
density is different of zero and, consequently, φ should depend on ρ. Nevertheless, as
φ is an isotropic vector function of its arguments, from the theorem of representation
of transversely isotropic functions [34] one has φ = 0 and the entropy flux can be
rewritten as Φ = Λεh + ∑n−1

a=1Λ
ξa ja or Φ = Λεh −Λε∑n−1

a=1 μaja . Here, it is worth
remembering that, unlike the total current in the bulk region, the total current i is not
exclusively given by partial faradaic currents. In fact, the total current in double layer is
due to non-faradaic currents associated with the charging of the electrical double layer
at an electrode-solution interface, as well as the faradaic currents corresponding to
the reduction or oxidation of some chemical substance. Consequently, the expression
i = ∑n−1

a=1ia is not valid in the double layer region.
In view of the restrictions above, and by recalling that ∇ρ is not an independent

constitutive variable, one uses ∇μa = ∑n−1
b=1

∂μa
∂ξb

∣∣∣
a �=b

∇ξb + ∂μa
∂θ

∇θ + ∂μa
∂ϕ

∇ϕ and
∑n−1

a=1caμa = ∑R
r=1 �rΥr , where Υr and �r respectively are the reaction extent and

the chemical affinity of a chemical reaction r, to write down Eq. (4.30) as

Π = −
n−1∑

a=1

ja · ∇μa +
(

n−1∑

a=1

jaμa − h

)
· ∇θ
θ

+ T · D

+p1 · D −
R∑

r=1

�rΥr − i · ∇ϕ ≥ 0. (4.34)

Eq. (4.34) evidences that some dissipative mechanisms in an electrochemical system,
e.g. thermal diffusion, electrodic reactions and Joule’s effect, take place only in the
double layer. Moreover, observe that the gradient of electrochemical potential is given
in terms of ∇ξa , ∇ϕ and ∇θ , unlike the bulk. Therefore, one expects that the mass
transport in the double layer region is associated with the gradient of species con-
centration (diffusive flux) and the gradient of electric potential (migration flux). As
consequence, the thermodynamic equilibrium state at point (x, t) in the double layer
requires a more complex set of conditions than in the bulk.

In fact, one has the same necessary conditions to ensureΠ = 0 at any (x, t) in the
double layer,
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(
∂Π

∂wDB

)∣∣∣∣
E

= 0 ,

(
∂2Π

∂wDB∂wDB

)∣∣∣∣
E
> 0 ,

butwDB is given bywDB ∈ {∇μa,∇θ,∇ϕ, Υr , D}. Performing the first-order deriv-
ative in relation to wDB , one obtains

(
∂Π

∂∇μa

)∣∣∣∣
E

= −ja = 0 , (4.35)

(
∂Π

∂∇θ
)∣∣∣∣

E
= 1

θ

(
n−1∑

a=1

jaμa − h

)
= 0 ,

h = 0 , (4.36)(
∂Π

∂∇ϕ
)∣∣∣∣

E
= −i = 0 , (4.37)

(
∂Π

∂Υr

)∣∣∣∣
E

= −�r = 0 , (4.38)

(
∂Π

∂D

)∣∣∣∣
E

= T + p1 = 0 ,

T = −p1. (4.39)

whence it concludes that, at the thermodynamic equilibrium state, the mass flux, the
heat flux and the electric current flux vanish as well as the chemical reactions, and the
stress tensor is given by the hydrostatic pressure.

In order to evaluate the constraints on the dynamic part of constitutive quantities
listed in (4.24), one restricts to the simplest linear forms for the constitutive relations.
If the gradients of temperature, chemical potential and electric field and the strains
are not very large, linear constitutive equations are adequate for the treatment of
constitutive answers of the double layer. Although, as it has been pointed out in the
literature [14], linear constitutive functions for chemical affinity are only suitable close
to chemical equilibrium, otherwise �r presents a highly non-linear relation with the
reaction extent. In view of these arguments, the constitutive relation for the chemical
affinity of a reaction r is not discussed in this work.

Under these conditions, one considers the symmetry group G2, which characterizes
transversely isotropic material bodies,

G2 = {Q ∈ O (E) , Qn = n} ,

where Q is an orthogonal transformation in a 3D-Euclidean space and O is the orthog-
onal group of E , and next uses the theorem of representation of constitutive functions
to set

Ti j = −pδi j +
(
λ+ 2

3
τ

)
Dmmδi j + 2τ D̄i j + O(2) ,

hi = κ1θ,i + κ2ϕ,i +κ3μ
a
,i + κ4ni + O(2) ,
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ii = ι1θ,i + ι2ϕ,i +ι3μa
,i + ι4ni + O(2),

ja
i = Ca

1 θ,i + Ca
2ϕ,i + Ca

3μ
a
,i + Ca

4 ni + O (2) , (4.40)

where D̄i j is the deviatoric part of D and all phenomenological coefficients are
functions of

PDB = P̂DB (ρ, θ, ϕ, ξa,∇θ · ∇θ,∇ξa · ∇ξa,∇ϕ · ∇ϕ, tr D) , (4.41)

such that the scalar product n·n has been eliminated because is equal to a unit constant.
Here, the influence of unit vectors on the stress tensor is omitted since it was considered
that only transport phenomena has a preferred direction. Moreover, observe that the
same phenomenological coefficients may be numerically different in bulk and double
layer (compare Eqs. 4.20 and 4.41). Furthermore, all phenomenological coefficients
are not constants that depend only on the chemical species or medium under question,
but constitutive functions that suffer the influence of temperature, electric potential,
viscosity among others.

Inserting Eq. (4.40) into Eq. (4.34), one obtains

Π = −
n−1∑

a=1

(
Ca

1 θ,i + Ca
2ϕ,i +Ca

3μ
a
,i + Ca

4 ni
)
μa
,i

+
n−1∑

a=1

(
Ca

1 θ,i + Ca
2ϕ,i +Ca

3μ
a
,i + Ca

4 ni
)
μa θ,i

θ

− (
κ1θ,i + κ2ϕ,i +κ3μ

a
,i + κ4ni

) θ,i
θ

+
(
λ+ 2

3
τ

)
D2

mm

+2τ D̄ik D̄ik −
R∑

r=1

�rΥr

− (
ι1θ,i + ι2ϕ,i +ι3μa

,i + ι4ni
)
ϕ,i ≥ 0 , (4.42)

and by carrying out the second-order derivatives of Π in relation to wDB it results in

n−1∑

a=1

Ca
3 ≤ 0 ,

n−1∑

a=1

Ca
1
μa

θ
− κ1

θ
≥ 0 , ι2 ≤ 0 ,

λ+ 2

3
τ ≥ 0 , τ ≥ 0 ,

n−1∑

a=1

Ca
4 ≤ 0 ,

n−1∑

a=1

Ca
4
μa

θ
− κ4

θ
≥ 0 , ι4 ≤ 0 ,

n−1∑

a=1

Ca
2 + ι3 ≤ 0 ,

n−1∑

a=1

Ca
2
μa

θ
− κ2

θ
− ι1 ≥ 0 ,

n−1∑

a=1

Ca
1 +

n−1∑

a=1

Ca
3
μa

θ
+ κ3

θ
≤ 0.

(4.43)
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The proposed phenomenological equations in Eq. (4.40) incorporate many cross
phenomena that are impossible to happen in the bulk region, such as thermoelectric
and electrophoretic effects, and thermal diffusion. These effects are due to the coupling
of fields, which interfere in a reciprocal way in the heat, mass and electric current flows.
For example, Ca

2 �= 0 and ι3 �= 0, both constrained by the condition (4.43)9, evidence
that the gradient of electric potential opposes the electrochemical potential gradients
of all ions. This thermodynamic condition recalls an important non-equilibrium phe-
nomenon observed in electrolyte solutions: the development of a diffusion potential.
Whenever an electrolyte is brought into contact with water, a gradient of electrochem-
ical potential arises both for the positive and negative ions and, therefore, they started
flowing away. Then, because of the difference of ionic mobility, there appears a ten-
dency for segregation of cations and anions, so that a gradient of electric potential
develops across the inter-phase that marks the local separation of ions. It is precisely
this gradient of electric potential that inhibits the charge segregation as the accelerated
cations face resistance to their motion whereas the slower anions are pushed up by
the gradient of electric field. Similar conclusions can be obtained for the remaining
phenomenological coefficients, where Ca

1 �= 0 and κ1 �= 0 are related to the thermal
diffusion, Ca

2 �= 0 and κ2 �= 0 to thermoelectric phenomena and Ca
3 �= 0 and κ3 �= 0

to electrophoretic effects.

5 Concluding remarks

A continuum thermodynamical description for the regions of bulk and double layer of
an electrochemical system is presented. Comparing the residual entropy inequalities
obtained for each region, it was shown that some dissipative mechanisms develop only
in the double layer, such as thermal diffusion, and thermoelectric and electrophoretic
phenomena. Then, the thermodynamic equilibrium state in the double layer requires
stricter conditions than in the bulk.

Even though the constitutive equations are the simplest possible, the constitutive
models proposed to the double layer and bulk regions are physically consistent, and
more comprehensive than the usual models since the emerging results do no constrain
themselves to equilibrium or close-equilibrium conditions, neither to limiting condi-
tions. Furthermore, the approach used has the advantages of clearness and generality
over the traditional non-equilibrium theory because the set of fundamental postu-
lates adopted are physically motivated and less restrictive. Hence, the thermodynamic
description provided in this work may stimulate chemists and chemical engineers to
take advantage of it to describe other non-equilibrium phenomena in more complex
chemical systems.
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